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The problem of the group stratification of the sys=em of equations describing mo- 
tion in the laminar sublayer and the turbulent core is considered. The fundamental 
group admissible by the initial system is constructed; invariant solutions con- 
structed on one of the subgroups lead to a system of ordinary differential equations. 
Joining of the solutions and interchange of the equations occur at the boundary of 
the laminar sublayer. A class of power-law flows of a turbulent boundary layer is 
investigated. In the region of decelerated motion a double-valued solution is 
found corresponding to attached or separated flow. The commonly used integral 
characteristics are calculated and presented in the form of an interpolation 
polynomial. 

In turbulent boundary-layer calculations using the method of integral relations there 
arises the problem of choosing a family of velocity profiles with one or more independent 
parameters to determine integral thickness (~*, 6**, etc.). It should be noted that so far 
there is no rational method of taking account of all profile shapes arising in cross sections 
of a turbulent boundary layer for a variable static pressure distribution. We describe below 
one possible method of establishing a family of velocity profiles for a turbulent boundary 
layer based on the use of a semiempirical theory of turbulence including the commonly used 
universal constants. 

We use a two-layer scheme to calculate the turbulent boundary layer. According to this 
scheme motion in the laminar sublayer is described by equations of the form 

arm ovx I dp O~v x Ov x avy 
v~ ~7- + vu oT  = p d~ + ~ ' a u ~ ;  a 7 - + - ~ u = O ,  

and in the turbulent core by 

av x Ov x i dp a { 8 au~'~ 

where e = 0Z 2 [~Vx/~y [ is the coefficient of eddy viscosity and I is the Prandtl mixing 
length; for simplicity we assume that I = ky over the whole thickness of the boundary-layer, 
where k is the turbulence constant. Henceforth we use the notation 

r x pu~x 
u =  u-~; s = R e x ;  R e ~ =  ~ ; ~ =  ud~; 

where u~ is the characteristic velocity and ~ = Rey. 

Introducing the stream function ~ and transforming to new variables s and ~ we obtain 
the equations: 

as - -  r u e  - -  z ~ ,  (1)  

L e n i n g r a d .  T r a n s l a t e d  f rom Zhurn a l  P r i k l a d n o i  Mekhanik i  i T e k n i c h e s k o i  F i z i k i ,  No. 4 ,  
pp.  126-132 ,  J u l y - A u g u s t ,  1975. O r i g i n a l  a r t i c l e  s u b m i t t e d  November 14,  1974.  

�9 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission of  the publisher. A copy o f  this article i~ available from the publisher for $15.00. 

582 



in the turbulent core 

(2) 

where U ~ - - u  ~ : z is the velocity defect and U e is the external inviscid flow field, where for 
generality we can set U~=u~(s)+2~ , where m is the ratio of the vorticity in the outer 
flow to the average vorticity in the turbulent boundary layer. 

A suitable family of velocity profiles is established by solving Eqs. (I) and (2) and 
satisfying boundary conditions depending on the kind of problem considered. 

To solve the problem formulated we apply the method of group stratification to Eqs. (i) 
and (2). This method, using the fundamental ideas of the theory of group properties of dif- 
ferential equations, is being more and more widely used at the present time as a result of a 
series of papers by V. Ovsyannikov [1-3] giving algorithms for the construction of Lie groups 
admissible by the system under consideration and the possibility of using these groups to 
find various classes of particular solutions of the initial system. 

The Prandtl--Mises equation (4) for pure laminar flow is solved in [4] by the method of 
symmetric solutions in the regionP{s>O, 0 ~ < ~ <  oo}, where the fundamental group admissible 
by Eq. (i) has a Lie algebra of operators with the following basis: 

X1 0 Xe = a 
= a-;; -5-i-; 

a m + t  o ~ 3m--t 0 
X a ' = s - ~  @ 2 ~ g ~ - +  2mz + ~ w ~  

for constraints of the form 

3m--i 
2 tim ue : ~s ; r --- tOoS 2 

Invariant solutions constructed on a subgroup corresponding to the operator X3 and sought 
for in the form 

_~+__jl 
~l=~l's 2 z = Z O 1 )  s 2'~ 

lead to the ordinary differential equation 

+ - z .  z"  + e .z, = 

where primes denote differentiation with respect to ~. 

Flow in the laminar sublayer was described by Eq. (3), and invariant solutions of 
Eq. (2) or the equivalent system Q describing flow in the turbulent core 

i 
az ~, -~, 

_ _  --_ Z) ~ ; 

Oz ( -- 

were found as recommended in [I]. It was found that the fundamental group admissible by 
system Q is described by the Lie algebra of the operators 

0 0 XI=77; X2=a-~; 
a a , a + ( m  l ) w - - -  a - a X3 s-T7 ~ -F (m + I )  ~ ~ ~- 2mz ~ a~ ~u 

(3) 
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Invariant solutions constructed on a subgroup with the operator Xs were sought for in the 
form 

Vh=q~s-(m+x); z=Zi(~h)s"-~; g=Y(~],).~r w-- W(~h)S m-i, 

which after substitution into Q led to the following system of ordinary differential 
equations: 

~_ k ~ Y ]/-~ + 2%~ - z, {v'z;" + rzlz;} + +  )a,zl = 2mZ,; (4) 

y , =  t 
1/ '~+ 2Oo~h -- Z! (5) 

To obtain a family of velocity profiles depending on a parameter it is necessary to in- 
tegrate Eqs. (3), (4), and (5) subject to appropriate boundary conditions. For example, 
for boundary-value problems conditions of the form Z(O)= ~; ZI(~)=0;Y(0)=0 can be used. 
The interchange of equations in the use of the two-layer scheme occurs at the boundary of 
the laminar sublayer; in this case it is assumed [5] that in passing through the boundary 
of the sublayer the derivatives of the velocity have discontinuities ( ~% /@ ) ~j=~-0 = 
k1(0v ~/@ ) ~=~+0 but the physical quantities themselves (velocity, friction pressure) are 
continuous. Using the latter considerations we write the equations which h01d on the bound- 
ary of the laminar sublayer (characteristic values are denoted by an asterisk): 
the physical conditions 

5 l = 6 t, (T.~)~/_o = (~v)6t+o; 
(6) 

the transformed conditions 

Z* ZI 
-- ~1" (2o)0 - -  Z*') k~l~ (-% - -  Z, ), 

e ~q* 

Y*-=~I-L t" ( [~-  2~  l = ~ Y * - ' ( ~ 2 1 2 ~  �9 

The joining conditions determine the initial conditions for integrating system (4), (5). 
Obviously if the ordinates D* of the switching of Eq. (3) to Eqs. (4) and (5) were known it 
would be possible to determine from (6) the initial conditions N~, Z~, %~, and Y* . The 
missing equation must be obtained from the condition ~67_0 = ~I+0 �9 So far the problem is 
completely self-similar, since the coordinate s (or x) Hoes no~ enter explicitly into either 
the initial equations or the boundary conditions. However, the requirement ~l=~T turns the 
problem into a locally self-similar Rroblem since in reducing this condition to dimension- 
less form we obtain ~i = ~*(Re~)(m+i)72. This result is a consequence of the known lack of 
similarity for turbulent boundary-layers in view of the different character of the develop- 
ment of flow in the laminar and turbulent parts of the boundary layer. In the classical 
studies of Karman [6] and Prandtl [7] it was assumed that such similarity exists; this 
assumption was based on measurements in a range of Reynolds numbers close to RexNi0~--107 
Here the presence of local similarity is assumed and all the integral characteristics ob- 
tained by solving the problem were calculated for the Reynolds number Rex--~-106. 

The parameter 8 appearing in Eqs. (3), (4), and (5) is not essential, since it can be 
eliminated from both the equations under consideration and the boundary conditions by a 
transformation of the form X = Z/fl, ~ = n8-i/~, li = ZI/8, ~i = nz8 I/= In performing the 
calculations the system (3), (4), (5) was reduced to a system of five ordinary first-order 
differential equations by the substitutions dk / d$ = t, dA~ / d$~ = t~, and it turned out to 
be convenient as in [4] to use the variables t and tz and not D and D, as arguments. In this 
case the radical singularity appears in the numerator of the right-hand sides of the 
equations: 
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4 o  7 ~, [0,2 ,~ [z,o 

: ,o j  o,~ ,~ ~ , o  

i : 
45  ' 4 2  O 4 2  '2',5 0 

where 

~t - -  ~ = P t ,  ( 7 )  

d~t - -  P 1 ,  d)h __ p t t t  ' dY P~ 
d~ - ~t-T - d~, l"l .i- Z| ~,7' ( 8 )  

p - l"~o.~--X 
m ~ -  1 ' 

Fig. i 2 , , ~ . - -  ~ ~t 

P t  ::= ~-- 
k ' ~ Y ~ t ,  I / t -!- 2eo~, - -  X I 

The boundary conditions have the form: at t--t~ ~--0,%=:~, at t=t, ~t=~n,%~=O, where gn cor- 
responds to a reasonably chosen asymptotic value ~i ( ~ = i0 was used in the calculations). 
Equations (7) and (8) were integrated by the Runge--Kutta method with refinements by Newton's 
method to satisfy the conditions at t = t,. Specifying an arbitrary value of to we integrate 
system (7), testing the joining conditions at each step; these are satisfied if 

~~ ( i  -P 20)0~ - -  %)--11-9 P d t  12% - -  ~"i = 2 .  kl  

When (9) is satisfied Eqs. (6) determine the initial conditions for integrating system (8), 
which can be integrated so long as the conditon ~i =$R is satisfied. At this point the con- 
dition ~ = 0 is tested, and if it is not satisfied the iteration process is repeated. 

The system (7), (8) contains the two important parameters m and ~o. The range of m is 
determined from the condition for the existence of a solution of the original system of 
equations, and the range of mo is such that the basic premises of the concept of a boundary 
layer will not be violated. Most of the calculations were preformed for mo = 0, but the 
cases mo = 0.5 and 1.0 were considered. In view of the slight effect of ~o on the integral 
characteristics of the boundary layer in the range considered these calculations are not 
presented here. 

The pressure gradient parameter varies from m = i (rear stagnation point) to m~_-0.286, 
where the solution of the initial system still exists. In the range of 0.5 ~ m ~ ! the 
integral characteristics are practically independent of m; all the changes affect only the 
laminar sublayer which is small and in accelerated flow does not exert a significant effect 
on the structure of the turbulent core. Therefore, to increase the accuracy of the inter- 
polation polynomials presented below the results of the calculations were processed up to 
m=0.5. 

In the region of decelerated flow m < 0, just as in the well known Hartree solution of 
the Falkner-Skan equation, a double-valued solution was found; for the same Value of m < 0 
there exist two independent solutions, one of which corresponds to attached flow at the sur- 
face, and the other to separated flow. Clauser [8] and Ludwieg and Tillmann [9] were the 
first to note this peculiarity. 

The separation point of the turbulent boundary layer (Tw=0)is characterized by the con- 
ditions ms =--0.2662 and H s = (6*/6**) = 1.7566. These results agree rather well with the 
experimental data of Stratford [I0] who obtained m~-0.25 and Hs~_l.8-2.0. Figure 1 shows 
the calculated values of the shape parameters most frequently used in turbulent boundary-layer 

6 
theory: ~ = 6**/6*, I = 6***/6*, and R = 25*[[(~/~y)(u/Ue)] = dy. The quantity R corresponds 

0 
to the integral of the viscous dissipation and is used in the well-known Truckenbrodt method, 
and 

6 5 

= - -  = t ~ d y ,  

o 
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In Fig. I the shape parameter a ~ 0 denotes the dimensionless velocity at the bound- 
ary of the laminar sublayer, and the shape parameter ax, which decreases to the constant 
value a~* = 0.035, is the velocity along the dividing line of the flow ~ = 0, i.e., a, = 
(u/Ue)~= 0 = 0.035. The latter condition follows from the fact that at a =0 (u/Ue)~= 0 = 
0.035. At a = 0 the condition a~ = 0 is satisfied. This creates certain advantages in 
using various integral methods to calculate separated turbulent flows. 

The results of the calculations, processed by the method of least squares, can be pre- 
sented as interpolation polynomials fo the following form: 
attached and partially separated flow (0 ~ a ~ 0.49; 0~ ~r ~ 0035; 

• 2 4 7  + O . 6 9 8 1 a  3 - -  3,4t45a~;  

I = 0 . 9 0 0 5 + l . O i 1 3 a + i . 1 9 6 4 a 2 + 7 . i O 2 2 a  a - -  17.0728a4; 

R = 0 . i 0 0 8  - -  0 . 385@ - -  0 . 0 0 4 0 a ~ + i . 6 5 i l a  3 - -  1.3658a~; 

s e p a r a t e d  f l o w  (0 ~ a l  ~< 0 .5 t )  ; 

z = 0.5393 -- 1.0766a 1 -~ 0 . i 0 1 1 a  2 -- 0.0618a~ - -  0 . 2 i3 i a~ ;  

I = 0 .9005 - -  2 .1394al  + 3.1247a~ - -  6,0071a~ q- 5.9687a~; 

B = 0 A 0 0 8  - -  2,8594a~ ~-' 4,9339a~ - -  9.4434a~ -}- 7,8162a~. 

The interpolation error does not exceed 2%. 
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